: More (Too ?) Flexible Methods
Trees and Neural Nets

Nearest Neighbours

Pattern Recognition




A simple, flexible and nonparametric method :

K-nearest neighbours

» Assume that n labeled points are available for training. Let
K < n. Consider a metric d on RP, (ex : Euclidean distance)

» At any point x, let 0 = o, be the permutation of {1,...,n}
such that
d(x, %5(1)) < -+ < d(X, X5(n))

» Extract the K-nearest neighbours of x

{X0(1)7 S ?X(J'(K)}

» Apply the majority vote :
Ny = Card{k € {17-'-7 K}, Yo(k) = y}v ye {_17 1}

C(x)=ar ma N,,
) &yl



A simple nonparametric method

K-nearest neighbours

query point query point
o at
query point sér o p, e
nf o: 8 o
@it---
LA
- L] s % 4
b -
f ive point 2inf ive points
query point quary point
o
I"_“\ &
‘\ Gt E N
Lo o
L
b
. . « "
2 »

class boundary

ive points 4i ive puints




K-nearest neighbours

Universal consistency (Stone '77)

Si k = kn — o0 et k, = o(n), the k- classifier is consistent
L(CK—NN) - — 0, as n— oo
whatever the data distribution, but...
» the learning rate can be arbitrarily slow

» Curse of dimensionality dimension : sorting the data is
computationally costly

» Instabilité : of K7 of the metric d?

» Metric learning (e.g. Mahalanobis distance) - More in several
weeks

» Many variants with weights



K-nearest neighbours : a too flexible method ?

k=5




Histograms - Local Averages

» Limitation of K-nearest neighbours : some of the nearest
neighbours may be very far from X!

» Consider a partition of the input space :

ClU...UCK:X

» Apply the majority rule : if X falls into Cj,
1. Count the number of training examples with positive label in
Ck
2. 3 xec, HYi = +1} > 30 x e, {Y: = —1}, predict
Y = +1. Predict Y = —1 otherwise.
» This rule corresponds to "plug-in" classifier
2I{n(x) > 1/2} — 1, where

K
o Y Y =41, X; € G}
R N e v r ey

k=1




Classification Trees : the CART algorithm

» If the partition is specified in advance (before observing the
data)...



Classification Trees : the CART algorithm

» If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !



Classification Trees : the CART algorithm

» If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !

» Choose the partition depending on the training data!



Classification Trees : the CART algorithm

v

If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !

v

Choose the partition depending on the training data!

The CART Book - Breiman, Friedman, Olshen & Stone (1986)

v

v

A greedy recursive partitioning algorithm :
X = (XMW, .. X)) eRrd



Classification Trees : the CART algorithm

» Training data (X1, Y1), ..., (Xa, Ya)

» For any région R C X, consider the majoriy label : Yg, where

n n
_ 1
YR:+1if§ ]I{Y,-:—l—l,X,-GR}>§E I{X; € R}
i=1 i=1

and Ygr = —1 otherwise

from the root node R = X = (g and the constant classifier
Yoo+ The goal is to split the cell Coo

Coo = Ci0 U Ci1
so as to refine the current rule and get

gl(X) = VCl,O]I{X € C17()} + ?C1,1]I{X € C171}.



"Growing the tree"

» Splitting Co o = X is performed in order to minimize ZN(gl),
or, equivalently, the impurity measure

N

ZH{X,' € Cro, Yi# Yol +{Xi€ G, Vi# Yo}
i—1

» Consider regions of the form
Cio = Coon{X¥ <s},
C1’1 = C070 N {X(J) > S}.

> li is enough to choose the splitting thresholds among the
observed values X,-(J)'s!



"Growing the tree"




"Growing the tree"

> In order to split node C; x, when not pure and containing at
least npmi, training data points, iterate thedouble loop :

1. From j =1 to d, find s (best splitting value for component
X)) so as to minimize the sum of the two impurity measures

Gk N{X; > s} and G N{X; < s}
2. Find the best splitting variable XU

» Impurity measures :
» classification error
» Gini index
> entropy



Classification Trees : the CART algorithm

Close View Unpruned Save Tree Fit to screen

Var. importance:
o

0.009
1 0.004
3:0




Classification Trees : the CART algorithm

> Interpretability/explainability, visualization
» Qualitative variables, incomplete data

» Quantification of the relative importance relative of the predictive
variables

» Randomisation

» Diagonal splits

» Balancing the two error types

» Extension to multiclass problems, to regression

» Model selection, complexity tuning : best sub-tree, fast pruning
(‘weakest link pruning’)

> Alternative algorithm : C4.5 (Ross Quinlan)
» Popularity : the decision tree mimics an ad-hoc expert system

> but... its predictive performance is moderate in general and it
exhibits a great unstability

» Decision trees are the essential bricks of Ensemble Learning



Lecture

Model Assessment
Model Selection



v

Generalization ability

v

Bias, variance and model complexity

The "data-rich situation" : Train-Validation-Test

v

v

Cross-validation : a popular method for prediction error
estimation

v

Bootstrap techniques



Looking for the right amount of complexity

Taet Error

Optimal
Complexicy overfitting

Training Error

Complexity



Errors, training errors, test/generalization errors

» Learning is based on a training sample

D, ={(X1, Y1), ..., (Xn, Yn)}

» The classifier 6,, € G selected through an "ERM like" method
is random, depending on D,,, as well as its error :

L(é\n) =E H{Y a 6\n(X)} ‘ D,

Expectation is taken over a pair (X, Y) independent from
training data D,

» One may take next expectation over D,

Err=E [L((_A',,)}



Methods for performance assessment, for model

selection

» Training error is not a good estimate !

L(C) = = S IY: # C0X))

i=1
It vanishes as soon as the class G is complex enough
= Overfitting and poor generalization

» The objective is twofold

» Model selection : choose the best model among a collection of

models
» Model assessment : for a given model, estimate its
generalization error



When data are not expensive

Divide the data into three parts :

v

Training - Validation - Test

» Typical choice : 50% - 25% - 25%

» K > 1 model candidates : G1, ..., Gk
» For each k € {1, ..., K}, apply ERM to training data = C%)
» Use validation data to find the "best" k € {1, ..., K}

> Estimate the error using the test data (independent from k)

v

How to proceed in a data-poor situation ?

Complexity regularization (structural risk minimiation),
resampling methods, etc.



Cross-Validation

Goal : estimate the generalization error

v

v

Let K > 1 (typical choices are 5 or 10), "K-fold
cross-validation"
(K=n "leave-one-out" estimation)

v

Split the data into K parts (of same size)

Forall k e {1, ..., K},
» learn C(—K) based on all data except the k-th part

v

» calculate the error of C(—%) over the k-th part

v

Average the K quantities



"Pulling yourself up by your own bootstrap"

(Baron de Miinchausen)

>

Bootstrap (the plug-in principle) : estimate the distribution of
ETI{C(X) # Y}

where E*[.] is the expectation w.r.t. the empirical df of the
(Xi, Yi)'s

v

Heuristics : replace the unknown df by an estimate

v

Monte-Carlo approximation

v

Higher-order validity



Neuron network growth over 24 hours

0 hours 10 hours 24 hours

In 2014, the group of Gabriel Popescu at lllinois U. visualized a
growing net of baby neurons using spatial light interference
microscopy (SLIM). Ref : http://light.ece.illinois.edu/
wp-content/uploads/2014/03/Mir_SRep_2014.pdf

Video : https://youtu.be/KjKsU_4sOnE

>

Untreated

LiCl Treated



http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
https://youtu.be/KjKsU_4s0nE

Child neuron network growth

nouveau-né
la naissance

Développement des réseaux de connections entre les neurones chez I'enfant.

Re : Museum de Toulouse http://www.museum.toulouse.fr/-/
connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-


http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-
http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-

Neuron

’ Le neurone

Inputs ~ Weights
I W,

Threshold T

Schematic of biological neuron

Neurone biologique Neurone artificiel




Network of Artificial Neurons (multilayer perceptron, MLP)

LA

Irpuat Hidden Chtpat
||I.'h_| layers layer
!Q‘: )

“ Y
'\ L \
#.ﬁ W R __;,F_EQ.
Ek -u,.‘. 7 ﬁi _-'p"'"x r ._.' _:,:‘-\.‘_ _‘__.-'IFH"'-H_ LY -_.-'
H\""\-\. .-"?:'\-% b f:( __."' H""\-& :'-.I'
_:-H'.H ""-:-\. ll}"'}.-'a:,' ; -_.-" L
S ZANY o
y Yoo N s T
o LS Y
i o




From the Artificial Neuron model to Neural Networks 1/2

» Artificial Neuronl : Mc Cullogh et Pitts, 1943

» Learning the Artificial Neuron model : the Perceptron by
Rosenblatt, 1957

» Minsky and Papert : limitation of the Perceptron, 1959

» Learning a multi-layer perceptron by gradient backpropagation,
Y. Le Cun, 1985, Hinton and Sejnowski, 1986.

» Multi-Layer Perceptron = a universal approximant, Hornik et
al. 1991

» Convolutional networks, 1995, Y. Le Cun and Y. Bengio

» Between 1995 et 2008, the domain is flat (non convexity,
computationally demanding, no theory)



From the Artificial Neuron model to Neural Networks 1/2

» Democratization of GPU's (graphical processing units) 2005

» Large image databases : Imagenet, Fei-Fei et al. 2008 (now
much more than 10° images)

» Deeper and deeper neural networks, learned by means of
massive databases

» Initialization with unuspervised learning (autoencoder)
» Word2vec (Mikolov et al. 2013)
» Dropout (Srivastava et al. 2014)



Artificial Neuron

» activation function (e.g. sign)

» weight vector and bias (intercept)
f(x) = g(w'x+b) (1)

Choose g differentiable preferably (cf gradient optimization
techniques)



Activation function for the Artificial Neuron

For instance :

Fonction sigmoide
iz

1 1

i}

One also uses hyperbolic tangent tanh (values in the range

(-1, 1)).



Limitation of the Artificial Neuron model

Limited to linearly separable data :

e} (o] L
o} o

[ ]
o 0,
\

T .




Add a processing intermediary layer

Now, compute :
f(x) = g(®(x)"w + b)

Feature map or latent representation.
Flexibility of neural networks : the feature map & is learned
from the training data.



Universal Approximation

In 1991, Hornik et al. prove that MLP's with one hidden layer and
p—+ 1 input is dense in the space of real valued continuous functions
on RP. A MLP with one hidden layer is a universal approximant.



Universal Approximation

In 1991, Hornik et al. prove that MLP's with one hidden layer and
p—+ 1 input is dense in the space of real valued continuous functions
on RP. A MLP with one hidden layer is a universal approximant.
Some other flexible/rich classes of decision functions (more next
week !) :

» Linear regressor : NO

» SVM with a universal kernel, e.g. Gaussian kernel : YES

» Random Forests : YES

» Boosting stumps : YES



Example of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p+ 1

Class of fonctions Hpp = {hmp : RPT — Y}

for the regression problem (continuous output Y)

M
hp(x) = > wz 2)
j=0
zj = tanh(aqj) (3)
p
a5 = Y wix (4)
i=0



About choosing the activation function

Hyperbolic tangent is chosen here as activation function,
differentiable.

e? —e?

s (3)
ea _|_ e a
H(a) = 1-h(a)? (6)

h(a) = tanh(a) =

This choice is appealing from a computational perspective since the
derivative can be expressed in terms of h(a). A similar property
holds for the sigmoid :



Architecture of a multi-layer neural network "feedforward"

» The single ouptut of a regressor MLP predicts a real value

» For classification with K classes, one chooses K outputs with
the sigmoid function or the softmax function
softmax(z) = (softmaxy(z), ..., softmaxk(z)), with

exp(z;)

softmax;(z) = > 1k exp(z))

» For a multi-output regression with K outputs, take K linear
outputs for the architecture



Architecture of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p + 1 for a regression task

Class of functions Hppp = {hmjp : RPTH — YV}

M
he(x) = &> wz) (7)
j=0
5 = gla) (8)
P
G = > wix (9)
i=0

with g(t) = trami172m-



Learning from Training Data

N

LW;8) =3 U(h(xn). )

n=1
Regression :
U(h(xn), yn) = (h(xn) — y")2
Classification (maximize the likelihood) : Interpret
fe(x) = p(y = c|x) (multiple outputs : one may use the softmax
function)
U(h(x),y) = —log f,(x)
To be notice : £ is non convex and has many local minima

» Our best : find a good local minimum

» For this reason MLP had been abandoned for a long time,
SVM/SVR were preferred, easier models to optimize



Optimization

Gradient backpropagation

>

When applying gradient descent, the error is backpropagated
through all the layers, starting from the last one,

One uses the chain rule for differentiation :

{;L(‘(/IV)) = ‘9%(;/_‘/) aaa(fl) to modify the weights of the hidden layer.
W J w::
i ji

Once all the modifications are computed, the network is
updated.

Backpropagation can be applied locally or globally



Gradient backpropagation

References :

Y. LeCun : Une procédure d'apprentissage pour réseau a seuil
asymmeétrique (a Learning Scheme for Asymmetric Threshold
Networks), Proceedings of Cognitiva 85, 599-604, Paris, France,
1985.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986)
Learning representations by back-propagating errors. Nature, 323,
533-536.



