
Pattern Recognition : More (Too ?) Flexible Methods
Nearest Neighbours, Trees and Neural Nets



A simple, flexible and nonparametric method :
K -nearest neighbours

I Assume that n labeled points are available for training. Let
K ≤ n. Consider a metric d on RD , (ex : Euclidean distance)

I At any point x , let σ = σx be the permutation of {1, . . . , n}
such that

d(x , xσ(1)) ≤ . . . ≤ d(x , xσ(n))

I Extract the K -nearest neighbours of x

{xσ(1), . . . , xσ(K)}

I Apply the majority vote :
Ny = Card{k ∈ {1, ...,K}; yσ(k) = y}, y ∈ {−1, 1}

C (x) = arg max
y∈{−1,+1}

Ny ,



A simple nonparametric method :
K -nearest neighbours



K -nearest neighbours

Universal consistency (Stone ’77)
Si k = kn →∞ et kn = o(n), the k- classifier is consistent

L(CK−NN)− L∗ → 0, as n→∞

whatever the data distribution, but...
I the learning rate can be arbitrarily slow

I Curse of dimensionality dimension : sorting the data is
computationally costly

I Instabilité : of K ? of the metric d ?

I Metric learning (e.g. Mahalanobis distance) - More in several
weeks

I Many variants with weights



K -nearest neighbours : a too flexible method ?



Histograms - Local Averages

I Limitation of K -nearest neighbours : some of the nearest
neighbours may be very far from X !

I Consider a partition of the input space :

C1
⋃
· · ·

⋃
CK = X

I Apply the majority rule : if X falls into Ck ,
1. Count the number of training examples with positive label in

Ck

2. If
∑

i : Xi∈Ck
I{Yi = +1} >

∑
i : Xi∈Ck

I{Yi = −1}, predict
Y = +1. Predict Y = −1 otherwise.

I This rule corresponds to "plug-in" classifier
2I{η̂(x) ≥ 1/2} − 1, where

η̂(x) =
K∑

k=1

I{x ∈ Ck}
∑n

i=1 I{Yi = +1, Xi ∈ Ck}∑n
i=1 I{Xi ∈ Ck}



Classification Trees : the CART algorithm

I If the partition is specified in advance (before observing the
data)...

many cells may be possibly empty !

I Choose the partition depending on the training data !

I The CART Book - Breiman, Friedman, Olshen & Stone (1986)

I A greedy recursive partitioning algorithm :
X = (X (1), . . . ,X (d)) ∈ Rd



Classification Trees : the CART algorithm

I If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !

I Choose the partition depending on the training data !

I The CART Book - Breiman, Friedman, Olshen & Stone (1986)

I A greedy recursive partitioning algorithm :
X = (X (1), . . . ,X (d)) ∈ Rd



Classification Trees : the CART algorithm

I If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !

I Choose the partition depending on the training data !

I The CART Book - Breiman, Friedman, Olshen & Stone (1986)

I A greedy recursive partitioning algorithm :
X = (X (1), . . . ,X (d)) ∈ Rd



Classification Trees : the CART algorithm

I If the partition is specified in advance (before observing the
data)...
many cells may be possibly empty !

I Choose the partition depending on the training data !

I The CART Book - Breiman, Friedman, Olshen & Stone (1986)

I A greedy recursive partitioning algorithm :
X = (X (1), . . . ,X (d)) ∈ Rd



Classification Trees : the CART algorithm
I Training data (X1,Y1), . . . , ; (Xn,Yn)

I For any région R ⊂ X , consider the majoriy label : ȲR , where

ȲR = +1 if
n∑

i=1

I{Yi = +1, Xi ∈ R} > 1
2

n∑
i=1

I{Xi ∈ R}

and ȲR = −1 otherwise

from the root node R = X = C0,0 and the constant classifier
ȲC0,0 . The goal is to split the cell C0,0

C0,0 = C1,0
⋃

C1,1

so as to refine the current rule and get

g1(x) = ȲC1,0I{x ∈ C1,0}+ ȲC1,1I{x ∈ C1,1}.



"Growing the tree"

I Splitting C0,0 = X is performed in order to minimize L̂N(g1),
or, equivalently, the impurity measure

N∑
i=1

I{Xi ∈ C1,0, Yi 6= ȲC1,0}+ I{Xi ∈ C1,1, Yi 6= ȲC1,1}

I Consider regions of the form

C1,0 = C0,0 ∩ {X (j) ≤ s},
C1,1 = C0,0 ∩ {X (j) > s}.

I Ii is enough to choose the splitting thresholds among the
observed values X (j)

i ’s !



"Growing the tree"

C2,2

C1,0

C2,3

X1

X2

C0,0

C1,0 C1,1

C2,2 C2,3



"Growing the tree"

I In order to split node Cj ,k , when not pure and containing at
least nmin training data points, iterate thedouble loop :
1. From j = 1 to d , find s (best splitting value for component

X (j)) so as to minimize the sum of the two impurity measures

Cj,k ∩ {Xj > s} and Cj,k ∩ {Xj ≤ s}

2. Find the best splitting variable X (j)

I Impurity measures :
I classification error
I Gini index
I entropy



Classification Trees : the CART algorithm



Classification Trees : the CART algorithm

I Interpretability/explainability, visualization

I Qualitative variables, incomplete data

I Quantification of the relative importance relative of the predictive
variables

I Randomisation

I Diagonal splits

I Balancing the two error types

I Extension to multiclass problems, to regression

I Model selection, complexity tuning : best sub-tree, fast pruning
(‘weakest link pruning’)

I Alternative algorithm : C4.5 (Ross Quinlan)

I Popularity : the decision tree mimics an ad-hoc expert system
I but... its predictive performance is moderate in general and it

exhibits a great unstability
I Decision trees are the essential bricks of Ensemble Learning



Lecture
–

Model Assessment
Model Selection



Agenda

I Generalization ability

I Bias, variance and model complexity

I The "data-rich situation" : Train-Validation-Test

I Cross-validation : a popular method for prediction error
estimation

I Bootstrap techniques



Looking for the right amount of complexity



Errors, training errors, test/generalization errors

I Learning is based on a training sample

Dn = {(X1,Y1), . . . , (Xn,Yn)}

I The classifier Ĉn ∈ G selected through an "ERM like" method
is random, depending on Dn, as well as its error :

L(Ĉn) = E
[
I{Y 6= Ĉn(X )} | Dn

]
Expectation is taken over a pair (X ,Y ) independent from
training data Dn

I One may take next expectation over Dn

Err = E
[
L(Ĉn)

]



Methods for performance assessment, for model
selection

I Training error is not a good estimate !

L̂n(Ĉn) =
1
n

n∑
i=1

I{Yi 6= C (Xi )}

It vanishes as soon as the class G is complex enough
⇒ Overfitting and poor generalization

I The objective is twofold

I Model selection : choose the best model among a collection of
models

I Model assessment : for a given model, estimate its
generalization error



When data are not expensive

I Divide the data into three parts :
Training - Validation - Test

I Typical choice : 50% - 25% - 25%

I K ≥ 1 model candidates : G1, . . . , GK

I For each k ∈ {1, . . . , K}, apply ERM to training data ⇒ Ĉ (k)

I Use validation data to find the "best" k̂ ∈ {1, . . . , K}
I Estimate the error using the test data (independent from k̂)

I How to proceed in a data-poor situation ?

Complexity regularization (structural risk minimiation),
resampling methods, etc.



Cross-Validation

I Goal : estimate the generalization error

I Let K ≥ 1 (typical choices are 5 or 10), "K -fold
cross-validation"
(K=n "leave-one-out" estimation)

I Split the data into K parts (of same size)

I For all k ∈ {1, . . . , K},
I learn Ĉ (−k) based on all data except the k-th part

I calculate the error of Ĉ (−k) over the k-th part

I Average the K quantities



"Pulling yourself up by your own bootstrap"
(Baron de Münchausen)

I Bootstrap (the plug-in principle) : estimate the distribution of

E∗[I{Ĉ (X ) 6= Y }]

where E∗[.] is the expectation w.r.t. the empirical df of the
(Xi ,Yi )

′s

I Heuristics : replace the unknown df by an estimate

I Monte-Carlo approximation

I Higher-order validity



Neuron network growth over 24 hours

In 2014, the group of Gabriel Popescu at Illinois U. visualized a
growing net of baby neurons using spatial light interference
microscopy (SLIM). Ref : http://light.ece.illinois.edu/
wp-content/uploads/2014/03/Mir_SRep_2014.pdf
Video : https://youtu.be/KjKsU_4s0nE

http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
https://youtu.be/KjKsU_4s0nE


Child neuron network growth

Re : Museum de Toulouse http://www.museum.toulouse.fr/-/
connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-

http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-
http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-


Neuron

Brain : More than 1010 neurons
Synaptic plasticity (connexion among neurons) - Neurogenesis
(including adults) : new neurons/connexions created



Network of Artificial Neurons (multilayer perceptron, MLP)



From the Artificial Neuron model to Neural Networks 1/2

I Artificial Neuronl : Mc Cullogh et Pitts, 1943
I Learning the Artificial Neuron model : the Perceptron by

Rosenblatt, 1957
I Minsky and Papert : limitation of the Perceptron, 1959
I Learning a multi-layer perceptron by gradient backpropagation,

Y. Le Cun, 1985, Hinton and Sejnowski, 1986.
I Multi-Layer Perceptron = a universal approximant, Hornik et

al. 1991
I Convolutional networks, 1995, Y. Le Cun and Y. Bengio
I Between 1995 et 2008, the domain is flat (non convexity,

computationally demanding, no theory)



From the Artificial Neuron model to Neural Networks 1/2

I Democratization of GPU’s (graphical processing units) 2005
I Large image databases : Imagenet, Fei-Fei et al. 2008 (now

much more than 106 images)
I Deeper and deeper neural networks, learned by means of

massive databases
I Initialization with unuspervised learning (autoencoder)
I Word2vec (Mikolov et al. 2013)
I Dropout (Srivastava et al. 2014)



Artificial Neuron

I activation function (e.g. sign)
I weight vector and bias (intercept)

f (x) = g(wT x + b) (1)

Choose g differentiable preferably (cf gradient optimization
techniques)



Activation function for the Artificial Neuron

For instance :

One also uses hyperbolic tangent tanh (values in the range
(−1, 1)).



Limitation of the Artificial Neuron model

Limited to linearly separable data :



Add a processing intermediary layer

Now, compute :
f (x) = g(Φ(x)Tw + b)

Feature map or latent representation.
Flexibility of neural networks : the feature map Φ is learned
from the training data.



Universal Approximation

In 1991, Hornik et al. prove that MLP’s with one hidden layer and
p + 1 input is dense in the space of real valued continuous functions
on Rp. A MLP with one hidden layer is a universal approximant.

Some other flexible/rich classes of decision functions (more next
week !) :

I Linear regressor : NO
I SVM with a universal kernel, e.g. Gaussian kernel : YES
I Random Forests : YES
I Boosting stumps : YES



Universal Approximation

In 1991, Hornik et al. prove that MLP’s with one hidden layer and
p + 1 input is dense in the space of real valued continuous functions
on Rp. A MLP with one hidden layer is a universal approximant.
Some other flexible/rich classes of decision functions (more next
week !) :

I Linear regressor : NO
I SVM with a universal kernel, e.g. Gaussian kernel : YES
I Random Forests : YES
I Boosting stumps : YES



Example of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p + 1

Class of fonctions Hmlp = {hmlp : Rp+1 → Y}
for the regression problem (continuous output Y )

hMLP(x) =
M∑
j=0

w
(2)
j zj (2)

zj = tanh(aj) (3)

aj =

p∑
i=0

w
(1)
ji xi (4)



About choosing the activation function

Hyperbolic tangent is chosen here as activation function,
differentiable.

h(a) = tanh(a) =
ea − e−a

ea + e−a
(5)

h′(a) = 1− h(a)2 (6)

This choice is appealing from a computational perspective since the
derivative can be expressed in terms of h(a). A similar property
holds for the sigmoid :

g(a) =
1

1 + exp(−1
2a)

.



Architecture of a multi-layer neural network "feedforward"

I The single ouptut of a regressor MLP predicts a real value
I For classification with K classes, one chooses K outputs with

the sigmoid function or the softmax function
softmax(z) = (softmax1(z), . . . , softmaxK (z)), with

softmaxi (z) =
exp(zi )∑

j=1K exp(zj)

I For a multi-output regression with K outputs, take K linear
outputs for the architecture



Architecture of a multi-layer neural network "feedforward"

Consider a MLP with an output layer of size K = 1, a hidden layer
of size M + 1, an input vector of size p + 1 for a regression task

Class of functions Hmlp = {hmlp : Rp+1 → Y}

hc(x) = g(
M∑
j=0

w
(2)
jc zj) (7)

zj = g(aj) (8)

aj =

p∑
i=0

w
(1)
ji xi (9)

with g(t) = 1
1+exp(−1/2t) .



Learning from Training Data

L(W ;S) =
N∑

n=1

`(h(xn), yn))

Regression :
`(h(xn), yn) = (h(xn)− yn)2

Classification (maximize the likelihood) : Interpret
fc(x) = p(y = c |x) (multiple outputs : one may use the softmax
function)

`(h(x), y) = − log fy (x)

To be notice : L is non convex and has many local minima

I Our best : find a good local minimum
I For this reason MLP had been abandoned for a long time,

SVM/SVR were preferred, easier models to optimize



Optimization

Gradient backpropagation

I When applying gradient descent, the error is backpropagated
through all the layers, starting from the last one,

I One uses the chain rule for differentiation :
∂L(W )

∂w
(1)
ji

= ∂L(W )
∂aj

∂aj

∂w
(1)
ji

to modify the weights of the hidden layer.

I Once all the modifications are computed, the network is
updated.

I Backpropagation can be applied locally or globally



Gradient backpropagation

References :
Y. LeCun : Une procédure d’apprentissage pour réseau à seuil
asymmétrique (a Learning Scheme for Asymmetric Threshold
Networks), Proceedings of Cognitiva 85, 599-604, Paris, France,
1985.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986)
Learning representations by back-propagating errors. Nature, 323,
533–536.


